Dell Ramps Up HPC Testing of AMD Rome Processors

By John Russell

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a recent blog (AMD Rome – is it for real? Architecture and initial HPC performance) Dell posted early benchmark data for Rome as well as introducing Minerva, a 64-server, Rome-based, PowerEdge C6525 cluster it is using in its Austin-based HPC and AI Innovation Lab.

The blog’s authors, Garima Kochhar, Deepthi Cherlopalle, and Joshua Weage, write: “This first blog in the Rome series will discuss the Rome processor architecture, how that can be tuned for HPC performance and present initial micro-benchmark performance. Subsequent blogs will describe application performance across the domains of CFD, CAE, molecular dynamics, weather simulation, and other applications.

“Initial performance studies on Rome-based servers show expected performance for our first set of HPC benchmarks. BIOS tuning is important when configuring for best performance, and tuning options are available in our BIOS HPC workload profile that can be configured in the factory or set using Dell EMC systems management utilities. The HPC and AI Innovation Lab have a new 64-server Rome based PowerEdge cluster Minerva. Watch this space for subsequent blogs that describe application performance studies on our new Minerva cluster.”

The assessment and calling attention to its Minerva cluster seem to indicate a strengthening bet by Dell on the AMD line of microprocessors. The blog mostly focused on Rome’s I/O bandwidth and flexible NUMA configurations. Both STREAM and HPL benchmarks were run.

As explained in the blog: “The four logical quadrants in a Rome processor allow the CPU to be partitioned into different NUMA domains. This setting is called NUMA per socket or NPS.

  • NPS1 implies the Rome CPU is a single NUMA domain, with all the cores in the socket and all the memory in this one NUMA domain. Memory is interleaved across the eight memory channels. All PCIe devices on the socket belong to this single NUMA domain
  • NPS2 partitions the CPU into two NUMA domains, with half the cores and half the memory channels on the socket in each NUMA domain. Memory is interleaved across the four memory channels in each NUMA domain
  • NPS4 partitions the CPU into four NUMA domains. Each quadrant is a NUMA domain here and memory is interleaved across the two memory channels in each quadrant. PCIe devices will be local to one of four NUMA domains on the socket depending on which quadrant of the IO die has the PCIe root for that device
  • Not all CPUs can support all NPS settings”

The blog authors say that, “where available, NPS4 is recommended for HPC since it is expected to provide the best memory bandwidth, lowest memory latencies, and our applications tend to be NUMA-aware. Where NPS4 is not available we recommend the highest NPS supported by the CPU model – NPS2, or even NPS1

Here is an excerpt from the blog on STREAM performance with a couple of figures:

“Memory bandwidth tests on Rome are presented in Figure.6, these tests were run in NPS4 mode. We measured ~270-300 GB/s memory bandwidth on our dual-socket PowerEdge C6525 when using all the cores in the server across the four CPU models listed in Table.1. When only one core is used per CCX, the system memory bandwidth is ~9-17% higher than that measured with all cores.

“Most HPC workloads will either fully subscribe all the cores in the system, or HPC centers run in high throughput mode with multiple jobs on each server. Hence the all-core memory bandwidth is the more accurate representation of the memory bandwidth and memory-bandwidth-per-core capabilities of the system.

“Figure.6 also plots the memory bandwidth measured on the previous generation EPYC Naples platform, which also supported eight memory channels per socket but running at 2667 MT/s. The Rome platform provides 5% to 19% better total memory bandwidth than Naples, and this is predominantly due to the faster 3200 MT/s memory. Even with 64c per socket, the Rome system can deliver upwards of 2 GB/s/core.”

Rome also performed well on HPL (portable version of Linpack). The blog notes:

“The Rome micro-architecture can retire 16 DP FLOP/cycle, double that of Naples which was 8 FLOPS/cycle. This gives Rome 4x the theoretical peak FLOPS over Naples, 2x from the enhanced floating-point capability, and 2x from double the number of cores (64c vs 32c). Figure.10 plots the measured HPL results for the four Rome CPU models we tested, along with our previous results from a Naples-based system. The Rome HPL efficiency is noted as the percentage value above the bars on the graph and is higher for the lower TDP CPU models.

Tests were run in Power Determinism mode, and a ~5% delta in performance was measured across 64 identically configured servers, the results here are thus in that performance band.

“Next multi-node HPL tests were executed and those results are plotted in Figure.11. The HPL efficiencies for EPYC 7452 remain above 90% at a 64-node scale, but the dips in efficiency from 102% down to 97% and back up to 99% need further evaluation.”

Link to Dell blog: https://www.dell.com/support/article/bb/en/bbbsdt1/sln319015/amd-rome-is-it-for-real-architecture-and-initial-hpc-performance?lang=en

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire