Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

By John Russell

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising platform for the implementation of quantum repeaters, quantum network, and networked quantum computation,” say the researchers in their paper published today in APS journal, Physical Review X.

During tests, the quantum memory stored 72 optical qubits — quantum bits of information analogous to the binary digits (bits) used in classical computing — and conducted 1,000 consecutive read-or-write operations in programmable style. The unit could also queue, stack, and buffer incoming information, which are three actions that classical computers rely on when interfacing with the internet. These results represent a performance two orders of magnitude larger than previous records for quantum memory.

The latest work is another step forward for quantum network development. Work on quantum memory and quantum networking has intensified recently with many approaches to quantum memory and repeater development underway. The Tsinghua researchers* note that substantial advances have been made for the realization of various quantum memories including photonic quantum memory with long coherence time based on atomic or spin ensembles, single atoms or ions, and single vacancy center (NV-vacancy).

The problem, they add, “To achieve a reasonable entangling rate over a metropolitan size of 100 km via the quantum repeater protocol, one has to combine long coherence time, large memory capacity, and high-fidelity operations altogether. Although there are demonstrations for each individual technique, how to make them compatible with each other and integrate all these elements into a single quantum memory setup remains a challenging goal in experiment.”

There are, of course, many groups racing to develop effective quantum networks. The U.S. Department of Energy, for example, issued a report, Building a Nationwide Quantum Internet, back in 2020. Lot’s of progress has been made and several cities have ongoing efforts, including, for example, Chicago, NYC, and Chattanooga. Likewise a few major cloud providers have similar efforts. For example, AWS has a center for quantum networking development, in Boston. Building effective and performant repeaters is one of the major challenges still impeding these efforts. (See HPCwire coverage, What’s Needed to Deliver the Nationwide Quantum Internet Blueprint.)

The Tsinghua University researchers’ approach promises to help overcome these challenges. Here’s the abstract from their paper (Realization of a programmable multi-purpose photonic quantum memory with over-thousand qubit manipulations):

“Quantum networks can enable various applications such as distributed quantum computing, long-distance quantum communication, and network-based quantum sensing with unprecedented performances. One of the most important building blocks for a quantum network is a photonic quantum memory which serves as the interface between the communication channel and the local functional unit. A programmable quantum memory which can process a large stream of flying qubits and fulfill the requirements of multiple core functions in a quantum network is still to-be-realized.

“Here we report a high-performance quantum memory which can simultaneously store 72 optical qubits carried by 144 spatially separated atomic ensembles and support up to a thousand consecutive write or read operations in a random access way, two orders of magnitude larger than the previous record. Due to the built-in programmability, this quantum memory can be adapted on-demand for several functions. As example applications, we realize quantum queue, stack, and buffer which closely resemble the counterpart devices for classical information processing. We further demonstrate the storage and reshuffle of 4 entangled pairs of photonic pulses with probabilistic arrival time and arbitrary release order via the memory, which is an essential requirement for the realization of quantum repeaters and efficient routing in quantum networks. Realization of this multi-purpose programmable quantum memory thus constitutes a key enabling building block for future large-scale fully-functional quantum networks.”

Bottom line: The photonic quantum memory implemented here is scalable, long-lived, fully-controllable, and combines unprecedented versatility, provides key enabling ingredients for the implementation of quantum repeaters and large-scale quantum networks.

Looking ahead, the researchers say, “In the future, it is possible to further improve the coherence time to over 0.1s and efficiency above 0.5 with much higher optical depth by loading the atoms into an optical lattice array, which will greatly improve the performance of photonic quantum logic. We can also exploit wavelength conversion techniques to achieve a quantum repeater network for long-distance communication. Finally, if in-memory quantum gates are further equipped via Rydberg interactions or spin superexchange, a nearly universal platform can be realized which will support the implementation of fully-connected quantum logic, error-corrected quantum network, or even a global quantum internet.”

As always, it’s best to read the paper directly.

Link to paper, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.021018

Authors* Sheng Zhang,1 Jixuan Shi,1 Zhaibin Cui,1 Ye Wang,1 Yukai Wu,1, 2 Luming Duan,1, 2 , and Yunfei Pu1, 2 , 1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China

2Hefei National Laboratory, Hefei 230088, PR China

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team UC Santa Cruz

May 4, 2024

It was a quiet Valentine’s Day evening when I interviewed the UC Santa Cruz team. Since none of us seemed to have any plans, it seemed like a good time to do it. But there was some good news for the Santa Cruz team Read more…

2024 Winter Classic: Meet the Roadrunners

May 4, 2024

This is the other team from the University of New Mexico. I mistakenly thought that one of their team members was going to make history by being the first competitor to compete for two different schools – but I was wro Read more…

2024 Winter Classic: Meet Channel Islands “A”

May 3, 2024

This is the second team from California State University, Channel Islands – or maybe it’s the first team? Not sure, but I do know they have two teams total, and this is one of them. As you’ll see in the video in Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

2024 Winter Classic: Meet Team Jackson State

May 3, 2024

This is the second time we’re seeing a team from Jackson State university. The team features two veterans of the 2023 Winter Classic, which should help, but it’s also a team whose members are involved in a lot of oth Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire