Improving Training for Scientific Machine Learning

March 6, 2023

March 6, 2023 — In the world of scientific machine learning (SciML), scientists are beginning to embrace the use of neural networks as a way to accelerate simulations. At the heart of deep learning algorithms, neural networks provide a mechanism to encode complex dependency structures, using many connected node layers to transform data into learned features to be used for a wide range of scientific tasks.

Spanning disciplines from quantum mechanics to health sciences, many successful machine learning (ML) and artificial intelligence (AI) methodologies aim to use neural networks either to complement or to speed up traditional computational models by training on various combinations of experimental and synthetic data. To a scientist, that improvement can mean the difference between a lifetime studying one dataset and a career studying multiple systems in much finer detail.

Despite their popularity, neural networks can be difficult to train and employ on large-scale problems. This is well-known for computer vision and natural language processing problems (more traditional ML application areas), but it is becoming increasingly clear for scientific problems as well. The challenges with training SciML models can be quite different from the challenges associated with training more general ML models.

A recent paper, Characterizing Possible Failure Modes in Physics-Informed Neural Networks, published in the Proceedings of the 2021 Conference on Neural Information Processing Systems by Lawrence Berkeley National Laboratory (Berkeley Lab) researchers Aditi Krishnapriyan and Michael Mahoney, and their collaborators Amir Gholami, Shandian Zhe, and Robert M. Kirby, has highlighted this fact. The paper considered physics-informed neural networks (PINNs), which incorporate domain knowledge in the form of a differential operator as a soft regularization in the training process, and it demonstrated that, while existing PINN methodologies can be used for relatively simple tasks, they can easily fail to learn relevant phenomena in somewhat more complex situations.

“We demonstrate that PINN methodologies can easily fail to learn relevant physical phenomena for even slightly more complex problems than very simple toy problems and that existing solutions are developed for very specific needs,” said Michael Mahoney, group lead of the Scientific Data Division’s Machine Learning and Analytics Group.

Loss Landscapes, ML Methodologies, and Promising Solutions

The work analyzed several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. It showed that the soft regularization in PINNs, which involves partial differential equations (PDE) based differential operators, can introduce a number of subtle problems, including making the problem more ill-conditioned. Importantly, these possible failure modes are not due to the lack of expressivity in the neural network architecture; instead, the PINN’s setup makes the loss landscape hard to optimize.

“The key point is not that a good scientist couldn’t find a solution to the problem of training a particular PINN model. They certainly could,” said Mahoney. “Instead, the key point is that that solution would not conform well with ML methodologies, and that creates a friction point for scaling SciML tools by both scientists and ML experts.”

The paper discusses two promising solutions to address these failure modes, each based on ML methodologies. In one solution, the team proposes using curriculum regularization, where the PINNs loss term starts from a simple PDE regularization and becomes progressively more complex as the neural network gets trained. Another approach is to pose the problem as a sequence-to-sequence or step-by-step learning task, rather than learning to predict the entire space-time at once. Their extensive testing showed that these methods could reduce error by up to 1-2 orders of magnitude compared to regular PINN training.

Further Research Exploring Additional Solutions

In two subsequent papers, currently in review, the team has begun to explore additional solutions, with an eye toward establishing the foundations for SciML training at scale.

In Adaptive Self-Supervision Algorithms for Physics-Informed Neural Networks, Mahoney, Shashank Subramanian, Robert M. Kirby, and Amir Gholami studied the impact of the location of the collocation points on the trainability of these models. The team found that the PINN performance can be significantly boosted by changing the location of the collocation points as training proceeds. Specifically, they propose a novel adaptive collocation scheme that progressively allocates more collocation points (without increasing their number) to areas where the model makes higher errors. Additionally, they found that restarting training during any optimization stall leads to better estimates for the prediction error. Training PINNS for these problems can result in up to 70% prediction error in the solution, especially with a system of low collocation points. They also found that the adaptive methods perform consistently on the level or slightly better than standard PINN methods, even for large collocation point regimes.

In Learning Differentiable Solvers for Systems with Hard Constraints, to be published in the Proceedings of the 2023 International Conference on Learning Representations, Mahoney, Krishnapriyan, and collaborator Geoffrey Négiar introduce a practical method to enforce linear PDE constraints for functions defined by neural networks. This required methods in differentiable physics and applications of the implicit function theorem to neural network models to develop a differentiable PDE-constrained neural network layer. During training, the model learns a family of functions, each of which defines a mapping from PDE parameters to PDE solutions. At inference time, the model finds an optimal linear combination of the functions in the learned family by solving a PDE-constrained optimization problem.

“Our initial work showed that there were a number of challenges with using the standard ‘physics-informed’ approach of a soft constraint,” said Aditi Krishnapriyan, a faculty scientist with Berkeley Lab and assistant professor at UC Berkeley. “To address this, we developed a method to incorporate this physical information as a much more strict constraint via a layer in the neural network. This took a lot more engineering and methods development, but ultimately it was interesting to see how much better this second approach did: we were able to get lower error and converge much faster to the correct solution.”

There is more work to be done in finding ways to combine domain information into high-quality ML methods, and the team is continuing to search for more solutions. “A fundamental challenge raised by this work is that of developing SciML methods that are principled both from the scientific perspective as well as from the perspective of ML training and testing methodology,” Mahoney said. “Often in ML, a solution is developed and then science is added as an afterthought, or the science solution is conceived and then ML is added as an afterthought. We want to start bringing both to the forefront to optimize the benefit across disciplines.”

About Berkeley Lab

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: Carol Pott, Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire