Boosting Discovery Speed and Productivity

February 4, 2019

While price and performance have typically been used when evaluating, selecting, and operating HPC storage systems, increasingly productivity is a more important parameter.  In essence, productivity means getting the best insights and answers in the shortest possible wall clock time within an envelope of other factors such as cost, and when the result is needed.

Productivity not only takes into account processing speed, the ability to keep CPUs satiated, and fast data transfers from storage to compute resources, but also factors in reliability, availability, speed to insight, and the completion of the greatest number of compute jobs in a given time. One additional productivity criteria to consider is how long a system can remain useful without excessive downtime and maintenance. Essentially, the discovery process needs high-performance systems that can quickly run the most compute and data analysis jobs over many years without excessive downtime or maintenance.

NCSA Blue Waters: The HPC high productivity poster child

A good example that embodies what is needed in the most demanding discovery environments is the National Center for Supercomputing Applications Blue Waters system. The Blue Waters team partnered with the Cray supercomputing company for compute and data storage to help achieve the high productivity goals.

From the start, those managing the Blue Waters program focused on productivity. Its mission is to enable science and engineering that cannot be done otherwise, and to greatly improve time to insight.  Examples of things not even feasible before Blue Waters include:

  • all atom simulations of viruses using over 100 million atoms
  • simulation of the first billion years of the universe evolution and galaxy formation after the big bang, which required all the memory on the Blue Waters compute system
  • producing high resolution digital elevation models of 1/3 of the earth in less than two years.

Some teams report a factor of ten or more increases in productivity while others report an infinite increase because they can do things that prior to Blue Waters were simply not possible.

Beyond raw computer power, the system had to have a tightly integrated, high-performance storage system that could support the compute data demands. Additionally, the entire compute and storage infrastructure had to be tightly integrated, flexible, optimized, and be highly reliable to avoid diminishing the quality of services.

One great challenge with computing systems used for scientific discovery is sustaining productivity over the years. Each year, the modeling, simulations, and analysis gets more complex, more granular, and makes use of vastly more data.

According to Bill Kramer, Principle Investigator and Director of the Blue Waters Project, “Despite its scale, Blue Waters is incredibly reliable.  Over the last project year, Blue Waters had only one unscheduled system wide interruption, due to a campus wide power issue, and has a 99.7% scheduled uptime.  Mean Time Between System-wide Interrupt have been four to eight months for the past several years. Even more importantly, (knock on wood somewhere please), is the node and disk reliability.  On a daily basis, the individual node failure rate is below 1.5 nodes/day (0.006% of all the nodes) and a drive failure rate continuing below 0.43 drives/day (0.0026% of all the disks). What that means is Blue Waters is running better now than it did in the first couple of years of operations and there is no indication that will change in the next couple of years.”

Supercomputing systems must scale in compute power, as well as storage capacity and performance. In every field, new lab equipment, satellites, telescopes and sensors have produced higher-resolution and finer granular data. In the life sciences, next-generation sequencers have become faster (producing more data in a given time) and much less expensive to operate (allowing many more sequences to be done in given time). Storage systems have had to keep pace with the data volume growth. And their data analysis systems had to scale in performance.

Blue Waters has kept pace with the demands of the scientific research community. Today, Blue Waters continues to be a discovery mainstay for the open research community as a workhorse system at NCSA. Since March 2013, Blue Waters has delivered over 26 billion core-hours to scientific research. A key to this success has been the ability to scale the system’s storage bandwidth and metadata to accommodate the enormous amounts of data being analyzed.

“The storage system requirements on Blue Waters are extremely ambitious.  The 1.1 TB/s sustain I/O bandwidth for Blue Waters is still unmatched by any other production open system in the world today. Combined with 36 racks of ClusterStorTM (36+of raw PB of storage PB) and over 250 PB of near-line storage, Blue Waters is still the most data capable system in the HPC world.” explained Kramer.

The key to HPC productivity: Find the right technology partner

Building a fast and highly productive system for discovery requires the integration of many advanced technologies. For leading-edge systems, that means incorporating solutions that are new to the market. Most organizations simply do not have the across-the-board expertise in every element, nor the in-house skill set to evaluate, select, and integrate the elements and then optimize and maintain the system’s performance.

That’s where an experienced technology partner can help. Cray designed, architected, and built the Blue Waters extreme scale system and maintains and improves the system to keep it at the leading edge of productive computing.

The system’s ClusterStor storage is a good example of how Blue Waters can remain a high performer and continue to be a productive resource. The system’s productivity remains high due to the ClusterStor storage’s high-performance and high level of resiliency.  Furthermore, the Blue Waters, with the ClusterStor storage system is a leading enabler of being able to converge big data and extreme computing workload on the same system running very large modeling to extreme data intensive and machine/deep learning workload.

“The ClusterStor organization has had the privilege to partner with the Blue Waters team for the past 6 years. As a result, we have carried forward the lessons learned into the latest ClusterStor storage solutions”, according to Don Grabski, who has been with the ClusterStor product management team for 7 years.  The ClusterStor L300 and L300N line of parallel file system storage represents the latest HPC storage solution. This storage is a perfect match for the most demanding discovery workloads. ClusterStor parallel file systems balance the value equation by delivering the exact performance, speed, scalability, data protection, and availability to match an organization’s requirements and budget demands.

The systems deliver enterprise-level performance with more capacity, fewer drives, less need for IT support and more data access. Furthermore, ClusterStor technology optimizes performance productivity and system availability, accelerating time to insight.

The current ClusterStor product line includes:

  • ClusterStor L300 Storage System, which is an all-HDD Lustreâ It achieves performance requirements with the lowest number of HDDs, enclosures, and racks by maximizing the performance of each storage device.
  • ClusterStor L300N Storage System, which is a hybrid SSD/HDD solution with flash-accelerated NXD software that redirects I/O to the appropriate storage medium. It delivers cost-effective, consistent performance on mixed I/O workloads while shielding the application, file system, and users from complexity through transparent flash acceleration.
  • ClusterStor L300F Storage System, which is a scalable storage unit that provides the opportunity to add Flash storage pool creating a truly hybrid system. The L300F is designed and optimized to overcome the latency experienced by rotating media – the remaining IOPS bottleneck for Lustreâ.

The ClusterStor line includes engineered HPC Storage Solution features including:

  • Integrated software and hardware solution
  • Test validation
  • Management
  • Support automation

Taking these features together, ClusterStor storage systems enable the fast time-to-results and sustained performance needed in today’s most demanding discovery environments. The systems also scale to meet future demands by offering a way to increase capacity without impacting performance or availability seamlessly.

To learn more about increasing HPC productivity, visit:

https://www.cray.com/products/storage/clusterstor

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Best Networking Experience on the Planet: Join the 2024 SCinet CommUNITY Program

July 1, 2024

Join the SC24 SCinet team in Atlanta, GA, and learn high-performance networking while you network with high-performance people! Applications close July 15. Apply Now The CommUNITY@SC24 Professional Development program Read more…

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardware to keep up with newer AI models to drive revenue and prod Read more…

Four Steps to Ensure GenAI Safety and Ethics

June 27, 2024

With the deployment of generative artificial intelligence (GenAI) happening at a rapid pace, organizations of all sizes are tasked with navigating the challenges around implementation, especially regarding ethics and Read more…

AI-augmented HPC and the Inflation of Science and Technology

June 27, 2024

Everyone is aware of the inflationary model of the early universe in which the volume of space expands exponentially then slows down. AI-augmented HPC (AHPC for short) has started to expand creating new space in the scie Read more…

Top Three Pitfalls to Avoid When Processing Data with LLMs

June 26, 2024

It’s a truism of data analytics: when it comes to data, more is generally better. But the explosion of AI-powered large language models (LLMs) like ChatGPT and Google Gemini (formerly Bard) challenges this conventional Read more…

Summer Reading: DARPA Showcases Quantum Benchmarking Progress

June 25, 2024

Last week, the Defense Advanced Research Projects Agency (DARPA) issued an interim progress update from the second phase of its Quantum Benchmark (QB) program. Begun in 2021 the QB effort has the ambitious “goal of rei Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 2338659951

AI-augmented HPC and the Inflation of Science and Technology

June 27, 2024

Everyone is aware of the inflationary model of the early universe in which the volume of space expands exponentially then slows down. AI-augmented HPC (AHPC for Read more…

Summer Reading: DARPA Showcases Quantum Benchmarking Progress

June 25, 2024

Last week, the Defense Advanced Research Projects Agency (DARPA) issued an interim progress update from the second phase of its Quantum Benchmark (QB) program. Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch Read more…

Shutterstock_666139696

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and imp Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Leading Solution Providers

Contributors

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire