Deep Learning on GPUs: Successes and Promises

By Sparsh Mittal

August 27, 2019

The rise of deep-learning (DL) has been fueled by the improvements in accelerators. Accelerators allow DL models to crunch a large amount of data, which is vital for them to achieve high accuracy. In fact, AlexNet, the famous winner of the ILSVRC 2012 competition, was trained on GPUs. GPU continues to remain the most widely used accelerator for DL applications, due to several of its features, such as high performance, continued improvements in its architecture and software-stack, ease of programming using high-level languages such as CUDA and availability of GPUs in cloud.

“Accelerating DL models” is chasing a moving target

As DL models are becoming more pervasive and accurate, their compute and memory requirements are growing tremendously. For example, training a deep neural network (DNN) takes a large amount of time, e.g., 100-epoch training of ResNet-50 on ImageNet dataset on one M40 GPU requires 14 days. Similarly, during inference, meeting the latency targets while achieving high data-reuse and throughput is a major challenge.

Extracting last bit of performance from GPU

While treating GPU as a black box is a convenient abstraction of DL researchers, even simple architectural optimizations can boost the performance of GPU significantly. For example, since the input-data to DNN remains unchanged, it can be stored in the constant cache. The weights can be loaded in shared memory to avoid incurring the penalty of accessing global memory. Also, partial sums can be stored in the register file to achieve efficient accumulation.

In fact, architecture-oblivious techniques run the risk of losing their theoretical benefits. For example, although weight pruning is expected to increase performance by virtue of reducing the model size of a DNN, on GPUs, pruning actually harms the performance of DNNs. This is because weight pruning makes the DNN sparse, which requires sparse matrix-multiplication (MM). However, optimizations such as memory-coalescing and matrix tiling cannot be performed on sparse MM. To address this inefficiency, researchers suggest doing “node pruning,” and not “weight pruning” on GPU.

Node pruning does not make the network sparse, and although it brings a smaller reduction in model size than weight pruning, it achieves higher throughput by more effectively utilizing the massive resources of GPUs.

Similarly, optimizing data-layouts, batching, and data-reuse is important to get high performance. Also, since convolution can be performed in multiple ways such as FFT, Winograd, lowering (matrix-multiplication) or direct convolution, the choice of the right strategy is essential. The recent survey paper I’ve written with Shraiysh Vaishay reviews many techniques for optimizing DL on GPUs.

Utilizing both CPU memory and GPU memory

DNN training requires a significant amount of memory, which may exceed the memory capacity of a single GPU. For example, training VGG-16 with a batch size of 256 requires 28GB memory, which is larger than the 12GB memory capacity of Titan X.

To alleviate the memory bottleneck issue, the memory resources of CPUs can be used. In the back-propagation algorithm, the feature maps of a layer, which are produced during the forward-propagation phase, are later reused during the backward-propagation phase of the same layer. Since current machine-learning frameworks allocate the memory for accommodating the needs of all the layers, these feature maps stay in GPU memory for a long time without getting used. To alleviate this inefficiency, feature maps not required by the current layer in the forward-propagation phase are offloaded to CPU memory and released from GPU memory. During the backward propagation phase, these feature maps are fetched from CPU memory to GPU memory just before the processing of that layer. Evidently, the GPU memory management techniques and high-bandwidth interconnect such as NVLink can play a significant role in accelerating training of DNN workloads.

HPC is vital for AI

Distributed computing over a cluster of GPUs can reduce the training time of DNNs significantly. For example, researchers from SenseTime Research and Nanyang Technological University, Singapore have trained AlexNet over ImageNet dataset in just 1.5 minutes. They have used a cluster of 64 machines, each with 8 Volta GPUs. They also perform a range of optimizations at all levels of abstraction, such as using NVIDIA’s NCCL communication library and storing parameters and gradients in half-precision (FP16). Also, they overlap the communication of gradient of one layer with backward propagation of subsequent layers, combine multiple allreduce operations into one operation to reduce the memory copy overhead and intelligently transmit only those gradients that exceed a threshold.

Similarly, researchers from Sony corporation have trained ResNet-50 in just 2 minutes using 3,456 Volta GPUs. This “race to train DNNs” is no less exciting than the “race to the moon” seen in the 1960s! On a more serious note, the DNN training performance can be a more meaningful metric for HPC systems than the peak performance metrics such as Exaflop. This has already led to the creation of benchmarks such as DawnBench and MLPerf.

AI accelerator future promises to be exciting

While the general-purpose nature of GPU makes it useful for a broad range of applications, it also precludes thorough optimization of GPU architecture for AI applications. In this regard, custom-made AI accelerators such as Google’s tensor processing unit (TPU) are in a vantage position. It remains to be seen whether the future trajectory of GPU architecture will see revolutionary or evolutionary changes. It will be also interesting to see how well the next-generation GPU strikes a balance between the conflicting goals of special-purpose and general-purpose computing, and how well it competes with the other AI accelerators.

About the Author

Sparsh Mittal received the B.Tech. degree in electronics and communications engineering from IIT, Roorkee, India and the Ph.D. degree in computer engineering from Iowa State University (ISU), USA. He worked as a Post-Doctoral Research Associate at Oak Ridge National Lab (ORNL), USA for 3 years. He is currently working as an assistant professor at IIT Hyderabad, India. He was the graduating topper of his batch in B.Tech and has received fellowship from ISU and performance award from ORNL. Sparsh has published more than 70 papers in top conferences and journals. His research interests include accelerators for machine learning, non-volatile memory, and GPU architectures. His webpage is http://www.iith.ac.in/~sparsh/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire