Using AI to Solve One of the Most Prevailing Problems in CFD

By James Sharpe

October 17, 2019

In this guest article, James Sharpe, MMATH, Lead for Big Data & Security at Zenotech, explores the application of AI technology to the challenge of computational mesh generation and the implications for engineering sectors.

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application to improve this previously time-consuming and iterative process. It has resulted in a mesh that is five to ten times more efficient than when generated manually. 

AI is attracting all the buzz right now, but inevitably, with the hype, the field has become awash with applications that are not designed to solve existing problems. There is undoubtedly a great temptation to use AI to improve CFD methods, often based on the raw substitution of AI data for simulation data. However, these tend not to work effectively, or to require orders of magnitude more training data than would be necessary to run the simulation. 

This investigation (led by Zenotech with AI specialists, AlgoLab) began with a comprehensive assessment of the potential for deploying AI technology into digital engineering processes. After a series of down-selects, the automated generation of computational meshes for a specialist application domain appeared as the likely candidate. 

The project concentrated on creating a reusable framework for training AI algorithms with real datasets. The process generated has been applied to the task of creating meshes for wind energy resource assessment, which is typically a time-pressured activity, where turnaround and accuracy are business-critical.

The new meshing process makes use of a set of rules, derived from physical properties of the terrain (height, gradient, curvature, terrain type) and the location of a specific point of interest. In the case of wind energy, this includes met masts, likely turbine locations or other existing data sources. Each rule is applied to every point on the terrain specification, with the AI algorithm responsible for determining the relative importance of each rule at each point and the appropriate set of parameter values that convert rules into mesh spacing. The resulting set of meshing instructions has O(1 million) variables for any given test case.  

As the training dataset relies on the repeated application of the real CFD-based wind analysis process (which is computationally expensive) and a comparison with a known highly accurate solution, the AI approach is designed to evaluate the minimum number of points to learn the parameter space. A Gaussian Process Model was selected as the most natural choice for this problem.

The implementation of the AI process makes use of the GPFlowOpt Python library (Knudde et al, 2017) using TensorFlow, with a Matern52 statistical covariance function. An initial 300 points were selected using LatinHyperCube sampling (equivalent to N rooks on a chessboard without threatening each other). New points to be evaluated are implemented using Hypervolume-based Probability of Improvement method [Ivo Couckuyt et al, 2014l] providing a fast calculation of the multi-objective probability of improvement and expected improvement criteria for Pareto optimization. (see Journal of Global Optimization, Vol 60, pp 575 – 594). 

The Hypervolume method constructs a Pareto front to select the next points to evaluate. Two objective functions are defined to be minimized: (i) the cell count in generated mesh (a good measure of the expense of the CFD simulation), and (ii) the RMS error of the generated flow solution at experimental data points. The resulting Pareto front and associated parameter settings at each point compose a lookup table that provides the optimal meshing rules for a given level of accuracy.  

The process can now be run automatically, and typically generates a mesh that is five to 10 times more efficient than one created manually. A vast number of training datasets have been produced in the process. Another benefit is that the process parameters are generic and therefore can be applied to new test cases without the need for additional training.  

The use of commodity computing and advanced hardware via EPIC, an online portal to high performance computing was a vital component. This delivers the scalability and processing power to (affordably) train datasets based on numerical experiments.

The results have led to process improvements that have already been deployed on two commercial projects, supporting growth and export in the wind energy sector. These types of projects have typically relied on lower-fidelity computational engineering methods to deliver timely results, and the new process makes it possible to deploy high-fidelity methods in the same timescale.   

The capability developed will now be further extended to include more data feedback to the automation process, and these methods can now be transferred to other engineering sectors.

About the Author 

James Sharpe is a specialist in computer science and software engineering at Zenotech Ltd. While at BAE Systems Advanced Technology Centre, James developed new mathematical algorithms for the latest in high performance computing hardware and led development teams in Applied Intelligence – working at the forefront of cybersecurity. James is the Zenotech lead for Big Data and Security. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire