ColdQuanta and Super.tech Accelerate Quantum Research for Q-NEXT

August 24, 2022

Aug. 24, 2022 — Quantum company ColdQuanta recently announced its acquisition of Chicago-based quantum startup Super.tech in a marriage of research complements — ColdQuanta’s hardware capabilities with Super.tech’s software innovations.

ColdQuanta’s Adam Friss and Woo Chang Chung work on Hilbert, the world’s first commercial cold-atom quantum computer. Credit: ColdQuanta.

The May 2022 announcement was good news for Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory.

By bringing Super.tech into the fold, ColdQuanta, a Q-NEXT partner, can operate with a more software-aware approach to quantum technology, accelerating research in quantum materials and simulations, core research areas for Q-NEXT. And Super.tech, itself a Q-NEXT affiliate, can take its computational programs to the next level by connecting with ColdQuanta’s quantum machines and hardware expertise.

“This is an example of how a startup can identify and fulfill a need in an emerging area of technology and then grow to complement the mission of a more established technology company,” said Q-NEXT Director David Awschalom, who is also an Argonne senior scientist, the Liew Family professor of molecular engineering and vice dean for research and infrastructure at the University of Chicago Pritzker School of Molecular Engineering, and the director of the Chicago Quantum Exchange.

ColdQuanta develops quantum devices and quantum information platforms based on cold-atom technology, in which neutral atoms are chilled to a few millionths of a degree above absolute zero. At that temperature, the atoms can be manipulated as carriers of quantum information, or qubits.

Unlike some other qubit types, which are human-fabricated, cold-atom qubits are nature-made.

“Atoms are really easy-to-understand physical systems. They’re easy to model. And really, the qubit itself is in some sense perfect,” said Tom Noel, ColdQuanta vice president for quantum computing. ​“You’re using this really nice, nature-provided qubit. So it takes the problem of making a nice qubit completely out of the hands of the experimenter.”

The major limiting factor lies not in the design of the qubit itself but rather in the scientist or engineer’s practical ability to control them, Noel said.

As a member of Q-NEXT, ColdQuanta supports the development of a cold-atom-based computer at the University of Wisconsin–Madison, a Q-NEXT university partner. There, scientists are using the computer to simulate the behavior of candidate materials for quantum devices.

ColdQuanta also plans to provide the Q-NEXT collaboration with access to its quantum computer at its headquarters in Boulder, Colorado.

“We want to make sure that we’re exposing the functionality of these cold-atom-based devices so that they can be compared in an open playing field, so the community can make informed decisions about the viability and interactions with the different players in the space, including those within the Q-NEXT collaboration,” Noel said.

Now that Super.tech is part of ColdQuanta, it can access the cold-atom quantum platform to battle-test its software. One of Super.tech’s offerings is SuperstaQ, which helps optimize software performance on various quantum computing platforms.

Q-NEXT researchers at Argonne are using it to tackle perhaps the biggest problem facing quantum computing: noise.

Noise, the unavoidable uncertainty that accompanies all measurements and calculations, arises from the environment and the random behavior of nature. And it brings error with it.

It’s a particularly gnarly problem for quantum devices. Quantum computation works by encoding information in quantum states of matter. These quantum states are fragile, and even a whisper of noise can destroy them, making quantum devices particularly error-prone. The quantum information science community is testing a battery of methods to combat the problem.

Q-NEXT researchers at Argonne are using SuperstaQ to design algorithms that target the underlying quantum hardware more efficiently, thereby reducing error.

“For example, instead of running a program and getting the right answer 10% of the time, they run SuperstaQ and get the right answer 50% of the time on typical problems,” said Pranav Gokhale, vice president of software at ColdQuanta and Super.tech co-founder. ​“Their aim is to understand the types of errors that quantum computers are particularly hampered by and figure out how to work around them.”

Q-NEXT collaborators also use Super.tech’s SupermarQ, a free, open-source collection of stress tests for quantum computers. Scientists can use the tests to assess different aspects of a quantum computer’s performance and figure out which applications are best suited to that device.

“Super.tech’s platforms are much more hardware-aware than other tools out there,” Gokhale said. ​“And at some level, you could call this an interdisciplinary approach: We integrate the algorithmic computer science with the physics of the device, the actual systems.”

Quantum technologies are expected to revolutionize the information landscape, giving rise to ultraprecise sensors, tamperproof communication networks and computers that can crack problems that today’s most powerful computers can’t solve.

The realization of these future technologies depends on a strong ecosystem of research institutions and companies, and that’s part of what a Q-NEXT partnership provides.

“The primary benefit is the connection to this broad spectrum of experts and the networking potential, running problems by this team and staying plugged into the broader set of research directions that are going to come up with really game-changing approaches to next-generation problems, problems that maybe we don’t even know we have yet,” Noel said.

“It’s been valuable to get feedback from researchers who use our software. It’s been helpful for designing better services, and the researchers have actually invented really cool, innovative ideas on top of our software,” Gokhale said. ​“It’s inspired us to push beyond what we were already thinking in our vision of quantum software.”

Awschalom says that forging connectivity between tech companies and research institutions is important both for advancing the science and for the quantum-technology market.

“A highly connected quantum ecosystem is key to bringing quantum technologies into everyday use, and strengthening the ecosystem is an important part of Q-NEXT,” Awschalom said. ​“ColdQuanta and Super.tech are a wonderful example of how stronger connections between researchers can accelerate R&D. Not only is their partnership helpful for Q-NEXT, it’s also advancing the broader field of quantum science.”

About Q-NEXT

Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network testbeds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field.

About Argonne

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About the Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.


Source: Leah Hesla, Argonne National Laboratory

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced  export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive manufacturing technologies. AIP’s FYI has posted a good Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introduced a new tool — Benchpress — intended to help evaluate Read more…

Editor’s Note: Datanami Is Now BigDATAwire

September 26, 2024

Earlier this week, Datanami completed the transition to BigDATAwire. Loyal readers will notice that we began this journey nearly two years ago. And while the transition may have taken a little longer than expected, it’ Read more…

Launch Codes: Code@TACC Alum Lands at UT Austin

September 26, 2024

For new college graduates, finding a job after earning your degree can take months. And, if the labor market is struggling with inflation, employment opportunities can be scarce. Being patient, staying positive, and expl Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Oak Ridge National Laboratory. The new open-source model, n Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Granite Rapids, have been customized and validated specific Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

The Three Laws of Robotics and the Future

September 14, 2024

Isaac Asimov's Three Laws of Robotics have captivated imaginations for decades, providing a blueprint for ethical AI long before it became a reality. First i Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

The Three Laws of Robotics and the Future

September 14, 2024

Isaac Asimov's Three Laws of Robotics have captivated imaginations for decades, providing a blueprint for ethical AI long before it became a reality. First i Read more…

AI Helps Researchers Discover Catalyst for Green Hydrogen Production

September 16, 2024

Researchers from the University of Toronto have used AI to generate a “recipe” for an exciting new catalyst needed to produce green hydrogen fuel. As the ef Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire