Custom Software Speeds Up, Stabilizes High-Profile Ocean Model

December 15, 2023

Dec. 15, 2023 — On the beach, ocean waves provide soothing white noise. But in scientific laboratories, they play a key role in weather forecasting and climate research. Along with the atmosphere, the ocean is typically one of the largest and most computationally demanding components of Earth system models like the Department of Energy’s Energy Exascale Earth System Model, or E3SM.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy.

Most modern ocean models focus on two categories of waves: a barotropic system, which has a fast wave propagation speed, and a baroclinic system, which has a slow wave propagation speed. To help address the challenge of simulating these two modes simultaneously, a team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%.

The researchers tested their software on the Summit supercomputer at ORNL’s Oak Ridge Leadership Computing Facility, a DOE Office of Science user facility, and the Compy supercomputer at Pacific Northwest National Laboratory. They ran their primary simulations on the Cori and Perlmutter supercomputers at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center, and their results were published in the International Journal of High Performance Computing Applications.

Because Trilinos, a database of open-source software ideal for solving scientific problems on supercomputers, is written in the C++ programming language and Earth system models like E3SM are typically written in Fortran, the team took advantage of ForTrilinos, a related software library that incorporates Fortran interfaces into existing C++ packages, to design and customize the new solver, which focuses on barotropic waves.

“A useful feature of this interface is that we can use every component of the C++ package in the Fortran language so we don’t need to translate anything, which is very convenient,” said lead author Hyun Kang, a computational Earth system scientist at ORNL.

This work builds on research results published in a previous Journal of Advances in Modeling Earth Systems paper in which researchers from ORNL and Los Alamos National Laboratory produced a code by hand to improve MPAS-Ocean. Now, the ForTrilinos-enabled solver has overcome the remaining drawbacks of the solver from the previous study, especially when users run MPAS-Ocean using a small number of compute cores for a given problem size.

MPAS-Ocean’s default solver relies on explicit subcyling, a technique that uses many small time intervals, or time steps, to calculate the characteristics of barotropic waves in conjunction with baroclinic calculations without destabilizing the model. If a baroclinic wave and a barotropic wave can be advanced with time step sizes of 300 seconds and 15 seconds, respectively, the barotropic calculation will need to complete 20 times more iterations to maintain the same speed, which takes a massive amount of computing power.

In contrast, the new solver for the barotropic system is semi-implicit, meaning it is unconditionally stable and thus allows researchers to use the same number of large time steps without sacrificing accuracy, saving significant amounts of time and computing power.

A community of software developers has spent years optimizing various climate applications in Trilinos and Fortrilinos, so the latest MPAS-Ocean solver that leverages this resource outperforms the hand-crafted solver, allowing other scientists to accelerate their climate research efforts.

“If we had to individually code every algorithm, it would require so much more effort and expertise,” Kang said. “But with this software, we can run simulations right away at faster speeds by incorporating optimized algorithms into our program.”

Although the current solver still has scalability limitations on high-performance computing systems, it performs exceptionally well up to a certain number of processors. This disadvantage exists because the semi-implicit method requires all processors to communicate with one another at least 10 times per time step, which can slow down the model’s performance. To overcome this obstacle, the researchers are currently optimizing processor communications and porting the solver to GPUs.

Additionally, the team has updated the time stepping method for the baroclinic system to further improve MPAS-Ocean’s efficiency. Through these advances, the researchers aim to make climate predictions faster, more reliable and more accurate, which are essential upgrades for ensuring climate security and enabling timely decision-making and high-resolution projections.

“This barotropic mode solver enables faster computation and more stable integration of models, especially MPAS-Ocean,” Kang said. “Extensive use of computational resources requires an enormous amount of electricity and energy, but by speeding up this model we can reduce that energy use, improve simulations and more easily predict the effects of climate change decades or even thousands of years into the future.”

This research was supported by E3SM and the Exascale Computing Project, or ECP. E3SM is sponsored by the Biological and Environmental Research program in DOE’s Office of Science, and ECP is managed by DOE and the National Nuclear Security Administration. The Advanced Scientific Computing Research program in DOE’s Office of Science funds OLCF and NERSC.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.


Source: Elizabeth Rosenthal, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

PNNL-Microsoft Collaborate on Cloud Computing for Chemistry, More to Come

October 25, 2024

RICHLAND, Wash.—Some computing challenges are so big that it’s necessary to go all in. That’s the approach a diverse team of scientists and computing experts led by the Department of Energy’s Pacific Northwest N Read more…

Xeon 6 vs. Zen-5 HPC Benchmark Showdown

October 24, 2024

In this GPU age, CPUs are often considered second citizens because most of the performance comes from the GPU. In most systems, GPUs are separate PCIe devices used by the CPU to accelerate numeric workloads. The exceptio Read more…

Nvidia’s Newest Foundation Model Can Actually Spell ‘Strawberry’

October 23, 2024

A new AI model from Nvidia knows just how many R’s are in the word strawberry, a feat that OpenAI’s GPT-4o model has yet to achieve. In what is known as the "strawberry problem," GPT-4o and a few other established mo Read more…

GPUs Help Establish New Milestone in Mathematics

October 23, 2024

Citizen mathematicians are using GPUs to find the highest prime numbers based on specific computing formulas. As it turns out, it is also a good way to stress test GPUs and map progress in computing capabilities over dec Read more…

Ayar Labs CEO: Optical Chiplets Coming to SOCs Soon

October 22, 2024

In AI, time is money. Top AI players are spending billions to create computing infrastructures to satisfy that need for speed. However, these companies are bottlenecked by computing constraints at the chip, memory, and I Read more…

Quantum Nuggets: Riverlane’s 2024 QEC Study, IBM’s V-score, Twisted Semiconductors

October 22, 2024

Quantum error correction specialist Riverlane today released a fascinating report — The Quantum Error Correction Report 2024 — that’s worth scanning; IBM and 28 collaborators last week released V-score, a new metri Read more…

PNNL-Microsoft Collaborate on Cloud Computing for Chemistry, More to Come

October 25, 2024

RICHLAND, Wash.—Some computing challenges are so big that it’s necessary to go all in. That’s the approach a diverse team of scientists and computing expe Read more…

Xeon 6 vs. Zen-5 HPC Benchmark Showdown

October 24, 2024

In this GPU age, CPUs are often considered second citizens because most of the performance comes from the GPU. In most systems, GPUs are separate PCIe devices u Read more…

Nvidia’s Newest Foundation Model Can Actually Spell ‘Strawberry’

October 23, 2024

A new AI model from Nvidia knows just how many R’s are in the word strawberry, a feat that OpenAI’s GPT-4o model has yet to achieve. In what is known as the Read more…

Ayar Labs CEO: Optical Chiplets Coming to SOCs Soon

October 22, 2024

In AI, time is money. Top AI players are spending billions to create computing infrastructures to satisfy that need for speed. However, these companies are bott Read more…

Celebrating Intel-AMD Unity: Looking Back at x86 Flubs

October 21, 2024

Both AMD and Intel were founded in the Disco era, and it took them decades to establish a brotherhood to protect the long-term interests of x86. But what took t Read more…

HPC Debrief: Matthew Shaxted, CEO of Parallel Works

October 20, 2024

In this installment of The HPC Debrief, we will discuss a big topic in HPC -- cluster provisioning. Getting hardware on-prem or in the cloud is often the easy p Read more…

In This Club, You Must ‘Earn the Exa’

October 17, 2024

There have been some recent press releases and headlines with the phrase "AI Exascale" in them. Other than flaunting the word exascale or even zettascale, these Read more…

Research Insights, HPC Expertise, Meaningful Collaborations Abound at TACCSTER 2024

October 17, 2024

It's a wrap! The Texas Advanced Computing Center (TACC) at UT Austin welcomed more than 100 participants for the 7th annual TACC Symposium for Texas Researchers Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Zapata Computing, Early Quantum-AI Software Specialist, Ceases Operations

October 14, 2024

Zapata Computing, which was founded in 2017 as a Harvard spinout specializing in quantum software and later pivoted to an AI focus, is ceasing operations, accor Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire