Discovery Helps Development of a Topological Quantum Computer and Dark Matter Detector

December 20, 2019

Dec. 20, 2019 — The Laboratory of the Electronic and Spin Structure of Nanosystems of St Petersburg University is headed by Eugene Chulkov, professor at the University of the Basque Country. Researchers from the laboratory note that they have been working to achieve this result for several years. First, the existence of single crystals with unusual properties was predicted in theory. Then they were synthesized in the laboratory at Technische Universität Dresden and Azerbaijan State Oil and Industry University. The new material turned out to have simultaneously the properties of an antiferromagnet and a topological insulator.

Ferromagnets are materials in which the magnetic moments of all atoms are aligned. They create a macroscopic magnetic field in the material. For example, computer hard drives are made of ferromagnets. However, everything is different in antiferromagnets: the magnetic moments of the atoms are oppositely directed. They, therefore, do not create a stray magnetic field, which, in fact, negatively affects the elements of electronics. It is antiferromagnets that might be used to produce storage devices in the future. Unlike ferromagnets, such memory devices can be put close to each other as many times as you wish. And this will make your computer more powerful. Additionally, the resonant frequency of antiferromagnets is not gigahertz, but terahertz. This means that devices based on them will work 1,000 times faster than classical ones. By the way, a prototype of an element of antiferromagnetic memory based on the new material MnBi2Te4 has been recently proposed in one research paper.

A discovered single crystal is also a topological insulator. It is a special material on the surface of which electrons behave in a fundamentally different way to how they do inside a single crystal. On the surface it is an extra fine conductive layer, and inside it is a semiconductor. It is these unique surface electrons, which form the so-called Dirac cone, that have been measured in the laboratory of St Petersburg University. What is important, even if the material surface is destroyed, it does not lose its properties and remains topologically protected. This property can be useful in the development of quantum computers. At present, one of the main problems in developing such computers is related to the fact that a qubit – a unit of information storage – is subject to decoherence. It means that, according to quantum laws, it collapses over time. However, if we make a qubit based on a topological insulator, hypothetically this problem can be avoided.

‘This single crystal is also of interest because of the fact that it provides researchers with a whole class of new materials,’ said Professor Aleksandr Shikin, the deputy head of the laboratory. ‘If layers that are connected antiferromagnetically are separated by layers of a topological insulator, we can create unique magnetic characteristics of the material with a gradual transition from antiferromagnetism to two-dimensional ferromagnetism. This is a completely new system with new features, which, by and large, have not even been discovered yet.’

By the way, the physicists have already managed to observe the quantum anomalous Hall effect in these single crystals. In solid state physics, the ordinary Hall effect is that if an external voltage is applied to a material placed in a magnetic field, there appears a current perpendicular to this voltage. It is used, for example, in magnetometers in smartphones and in electronic ignition systems of internal combustion engines. There is also a quantum Hall effect. However, it is the quantum anomalous Hall effect that has never been observed before in systems where the magnetic layer is precisely ordered, as in a MnBi2Te4 single crystal. Since in this case, the effect is possible without applying an external magnetic field, the new material becomes very promising for developing a wide variety of electronic devices. For example, another paper has already proposed a model of a topological spin field-effect transistor based on MnBi2Te4 material.

Additionally, as the researchers note, the single crystal that is obtained can give an impetus to the development of elementary particle physics. There is a hope that topological insulators will help experimentally detect Majorana fermions – specific particles that are their own antiparticles at the same time. They were hypothesized by the Italian physicist Ettore Majorana in the 1930s, but have not yet been discovered. According to theoretical studies, the Majorana fermion can exist as a quasiparticle in topological insulators. As a matter of fact, it is this particle that due to its topological protectability is an excellent candidate for a qubit in a quantum computer.

‘Another interesting example is the theoretical work which states that it is possible to develop a dark matter detector based on our material,’ said Ilya Klimovskikh, Ph.D. and laboratory assistant. ‘Since it is a magnetic topological insulator, it is possible to realize the phase of an axion insulator in it. On its basis, it is possible to develop a dark matter detector with a certain range that does not exist yet. This is very unexpected, but such papers are likely to appear because the material has completely new and unique properties.’

At St Petersburg University, the researchers measured the magnetic characteristics and photoelectron spectra of the new single crystal. It was done using the equipment of the resource centers of the University Research Park: the Centre for Physical Methods of Surface Investigation and the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics. Interestingly, the preliminary version of the scientific article (preprint), which appeared in the public domain before publication, has been cited more than 60 times. In total, the scientific collaboration supervised by St Petersburg University Professor Evgeny Chulkov includes 22 research institutions from all over the world.

‘So many institutions participating in a single publication in the field of condensed matter may seem unusual. However, to solve effectively complex problems in modern solid state science requires consolidated efforts of various highly professional teams. They include theorists, chemists, physicists and materials scientists. This trend will only grow stronger in the foreseeable future,’ said Eugene Chulkov.


Source: St. Petersburg State University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire