Hawk HPC System Helps Scientists Advance Hydrogen-based Energy Storage

May 26, 2021

May 26, 2021 — Advances in renewable energy technologies continue to move humanity closer to being able to power our lives using cleaner, safer methods. Whether it is wind turbines or solar panels, researchers have made great strides in making these sources more efficient.

One major issue remains, though, and it is unlikely to go away any time soon—humans have no influence over when the wind blows or the sun shines. This means that in order to use renewable energy on a global scale, researchers must also devise methods for efficiently storing excess energy generated during “boom” times so there is ample power stores for moments when renewables are not keeping up with demand.

Among the promising contenders for storing excess energy, hydrogen is among the most popular. In a process called water electrolysis, scientists can create chemical reactions to break down the molecular bonds of water molecules so they become their constituent parts—hydrogen and oxygen. The resulting hydrogen molecules must then be compressed into storage containers where they can be used as replacements for dirtier energy sources coming from fossil fuels.

While researchers have made some progress identifying ways to do electrolysis at an industrial scale, there is still one major hurdle to clear—currently, iridium is the only catalyst proven to remain both active and stable enough to facilitate water oxidation, a key step in water electrolysis. Unfortunately, natural sources of iridium are vanishingly rare on the Earth’s surface. Without having the technology to drill down to the Earth’s core or harvest iridium from passing meteors, researchers must search for either an entirely new material or develop metal alloys—mixes of two or more different metals that retain certain characteristics from their constituent materials—in order to scale up water electrolysis to the point where it can make a meaningful contribution to global energy storage requirements.

Recently, researchers from the Fritz Haber Institute in Berlin have been using the Hawk high-performance computing (HPC) system at the High-Performance Computing Center Stuttgart (HLRS) to model the complex chemical reactions that take place during electrolysis at a molecular level. The team hopes that by using both cutting-edge experimental techniques and world-class supercomputers for simulation, they can gain a greater insight into what makes iridium so effective in order to develop an efficient method for using hydrogen to store energy on a global scale.

Funding for Hawk was provided by the Baden-Württemberg Ministry for Science, Research and Art, and by the German Federal Ministry for Education and Research through the Gauss Centre for Supercomputing (GCS). Hawk is part of the GCS national supercomputing infrastructure.

“It really is a million-dollar question about why iridium is so special,” said Dr. Travis Jones, Fritz Haber Institute scientist and a researcher on the project. “There are a lot of ideas out there, and many of them revolve around the idea that the absorption energy of different intermediates in the reaction is ideally balanced. That said, a deep understanding is lacking, so we can’t just look at the periodic table and say iridium works for electrolysis because of how many electrons it has. We would love to know what it is about iridium makes it work so well in this context.”

Viewing fine-grained interactions through two different lenses

The solid-liquid interface at the iridium rich surface of an Ir-Nb mixed oxide water oxidation catalyst. Iridium atoms are shown as blue, niobium as green, oxygen as red and hydrogen as white. Image credit: Travis Jones.

Gaining a more fundamental view into how molecules behave during electrolysis requires both world-class computing resources and high-end experimental facilities. Scientists need to observe these chemical reactions at the atomic level, charting the paths of electrons for individual atoms while watching several hundreds of these atoms interacting with one another. Moreover, they would like to study these phenomena under a variety of conditions, an approach that would be impossible experimentally but can be done using computational modelling. Computational scientists then share these models with experimentalists, providing further insights into spectroscopic experiments that use focused light to illuminate atomic-level behaviors in a chemical reaction.

This is only the first point when HPC plays an important role, though. “Simulating the electrons by solving Schrödinger’s equation is the first step. Here, we are basically guessing what we have in the system by uncovering the atomic structure of the catalysts during experiments,” Jones said. “What the experiments can’t tell us, however, is how the reaction mechanism works at the atomic level, but the simulations can.”

In essence, the first phase of modelling and experimental work allows the researchers to get accurate, atomic-level detail of water atoms on the surface of the catalyst. Once the researchers feel confident that they have an accurate picture, they begin the second phase, which allows them to make slight modifications to inputs and model how the reaction proceeds under different conditions. This rapid-fire approach to modelling allows the researchers to observe how the reaction changes under the influence of small changes in voltage or of variations in the composition of metal alloys being used as the catalyst, among other inputs.

Through its work, the team identified a particular alloy, iridium oxide mixed with niobium (Ir60Nb40Ox) that behaves nearly as stably as pure iridium, but requires 40 percent less of the precious metal. While the team knows that much more work needs to be done to identify other materials that might be suitable as an electrocatalyst, it feels confident that the two-pronged approach of spectroscopic experiments and large-scale simulations is the ideal method for moving the research forward.

Today’s supercomputers focused on tomorrow’s reimagined energy grid

Like many researchers in his field, Jones indicated that being able to scale up electrolysis to the point it can function on a global level still faces many challenges. But the promise of using clean hydrogen gas to spin turbines in power plants or developing new fuel cells that could supplant combustion-based automotive engines has scientists focused on finding ways to make the process more efficient.

Through a large, international effort, the code used by Jones and his collaborators was recently modified to run on hybrid supercomputing architectures—machines that use graphics processing units (GPUs) in addition to traditional CPUs. The team also began working on scaling its application to take full advantage of increasingly powerful architectures such as those made available by GCS at its three centers.

While Jones indicated that faster, larger computers make it possible for the team to study larger molecular systems or more permutations of a given system, the investigators are still limited in the number of atoms they can simulate during each run. Next-generation systems will help address some of these computational hurdles. At the same time, however, simulating ever larger systems will introduce a new problem: his team will primarily be limited by system memory availability—an increasingly common challenge for researchers at the forefront of computational science in many research domains.

Despite more technical hurdles to overcome, the team feels confident that using HPC to accelerate experimental efforts will prove indispensable moving forward. While water electrolysis may not immediately become the dominant method for changing the world’s energy grid, Jones feels confident that hydrogen will prove to be a game-changer in electrical energy storage and conversion. Whether scientists wind up finding a cheaper, more readily available replacement for iridium or developing alloys that can use iridium in sparing amounts, the promise of clean energy storage motivates the team to keep searching.

“Electrolytic water splitting links the electrical and chemical sectors, and when we think about going climate-neutral by 2050, that link becomes critical,” Jones said. “It is not just energy storage that we have to worry about; it is also sustainable chemical production. Green hydrogen could help solve both of these issues.”


Source: HLRS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

In This Club, You Must “Earn the Exa”

October 17, 2024

There have been some recent press releases and headlines with the phrase "AI Exascale" in them. Other than flaunting the word exascale or even zettascale, these stories do not provide enough information to justify using Read more…

Research Insights, HPC Expertise, Meaningful Collaborations Abound at TACCSTER 2024

October 17, 2024

It's a wrap! The Texas Advanced Computing Center (TACC) at UT Austin welcomed more than 100 participants for the 7th annual TACC Symposium for Texas Researchers (TACCSTER). The event exists to serve TACC's user community Read more…

Nvidia’s Blackwell Platform Powers AI Progress in Open Compute Project

October 16, 2024

Nvidia announced it has contributed foundational elements of its Blackwell accelerated computing platform design to the Open Compute Project (OCP). Shared at the OCP Global Summit in San Jose today, Nvidia said that key Read more…

On Paper, AMD’s New MI355X Makes MI325X Look Pedestrian

October 15, 2024

Advanced Micro Devices has detailed two new GPUs that unambiguously reinforce it as the only legitimate GPU alternative to Nvidia. AMD shared new facts on its next-generation GPU MI355X, based on CDNA4 architecture. The Read more…

Like Nvidia, Google’s Moat Draws Interest from DOJ

October 14, 2024

A "moat" is a common term associated with Nvidia and its proprietary products that lock customers into their hardware and software. Another moat breakdown should have them concerned. The U.S. Department of Justice is Read more…

Recipe for Scaling: ARQUIN Framework for Simulating a Distributed Quantum Computing System

October 14, 2024

One of the most difficult problems with quantum computing relates to increasing the size of the quantum computer. Researchers globally are seeking to solve this “challenge of scale.” To bring quantum scaling closer Read more…

In This Club, You Must “Earn the Exa”

October 17, 2024

There have been some recent press releases and headlines with the phrase "AI Exascale" in them. Other than flaunting the word exascale or even zettascale, these Read more…

Research Insights, HPC Expertise, Meaningful Collaborations Abound at TACCSTER 2024

October 17, 2024

It's a wrap! The Texas Advanced Computing Center (TACC) at UT Austin welcomed more than 100 participants for the 7th annual TACC Symposium for Texas Researchers Read more…

Nvidia’s Blackwell Platform Powers AI Progress in Open Compute Project

October 16, 2024

Nvidia announced it has contributed foundational elements of its Blackwell accelerated computing platform design to the Open Compute Project (OCP). Shared at th Read more…

On Paper, AMD’s New MI355X Makes MI325X Look Pedestrian

October 15, 2024

Advanced Micro Devices has detailed two new GPUs that unambiguously reinforce it as the only legitimate GPU alternative to Nvidia. AMD shared new facts on its n Read more…

Nvidia Is Increasingly the Secret Sauce in AI Deployments, But You Still Need Experience

October 14, 2024

I’ve been through a number of briefings from different vendors from IBM to HP, and there is one constant: they are all leaning heavily on Nvidia for their AI Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire